
Demystifying Hidden Privacy Settings
in Mobile Apps

Yi Chen1,2,4∗, Mingming Zha1,4, Nan Zhang2, Dandan Xu1,4, Qianqian Zhao1,4, Xuan Feng1,4, Kan Yuan2,
Fnu Suya3, Yuan Tian3, Kai Chen1,4§, XiaoFeng Wang2§, Wei Zou1,4

1{CAS-KLONAT†, BKLONSPT‡, SKLOIS\},Institute of Information Engineering, CAS, 2Indiana University Bloomington,
3The University of Virginia,

4School of Cyber Security, University of Chinese Academy of Sciences
{chen481, nz3, kanyuan, xw7}@indiana.edu, {fs5xz, yuant}@virginia.edu

{zhamingming, xudandan, zhaoqianqian, fengxuan, chenkai, zouwei}@iie.ac.cn

Abstract—Mobile apps include privacy settings that allow their
users to configure how their data should be shared. These settings,
however, are often hard to locate and hard to understand by the
users, even in popular apps, such as Facebook. More seriously,
they are often set to share user data by default, exposing her
privacy without proper consent. In this paper, we report the first
systematic study on the problem, which is made possible through
an in-depth analysis of user perception of the privacy settings.
More specifically, we first conduct two user studies (involving
nearly one thousand users) to understand privacy settings from
the user’s perspective, and identify these hard-to-find settings.
Then we select 14 features that uniquely characterize such hidden
privacy settings and utilize a novel technique called semantics-
based UI tracing to extract them from a given app. On top of
these features, a classifier is trained to automatically discover the
hidden privacy settings, which together with other innovations,
has been implemented into a tool called Hound. Over our labeled
data set, the tool achieves an accuracy of 93.54%. Further
running it on 100,000 latest apps from both Google Play and
third-party markets, we find that over a third (36.29%) of
the privacy settings identified from these apps are “hidden”.
Looking into these settings, we observe that they become hard to
discover and hard to understand primarily due to the problematic
categorization on the apps’ user interfaces and/or confusing
descriptions. Further importantly, though more privacy options
have been offered to the user over time, also discovered is the
persistence of their usability issue, which becomes even more
serious, e.g., originally easy-to-find settings now harder to locate.
And among all such hidden privacy settings, 82.16% are set
to leak user privacy by default. We provide suggestions for
improving the usability of these privacy settings at the end of
our study.

I. INTRODUCTION

Today many mobile applications (app for short) are designed
to utilize user information for better services. For this purpose,
they often seek the users’ consents through various privacy
settings: e.g., those for one to decide whether to share her
location information with a social app or enable her friends to

∗Work was done when the first author was at Indiana University Blooming-
ton.
§Corresponding Authors
†Key Laboratory of Network Assessment Technology, CAS.
‡Beijing Key Laboratory of Network Security and Protection Technology
\State Key Laboratory of Information Security, IIE, CAS

Fig. 1: Example of default privacy setting in Facebook

locate her via her phone number (“let other users find me using
my phone number”). Although such privacy settings indeed
provide the user with means to choose her desired levels of
privacy protection, there are complaints about the difficulty
in locating them from an app’s user interfaces (UIs), which
can become a serious privacy concern when these settings are
by default configured to expose user data. In October 2016,
Facebook was given the “Big Brother” award [1] as the “biggest
privacy-offender of the year”. Voters criticized its app’s privacy
settings, many of which are not only opt-in by default for
collecting sensitive data from users (e.g., location, friend list,
etc.), but also hiding deeply inside the UIs and difficult to find.
For instance, Facebook had a privacy setting “Nearby Friends”
that allowed the app to share user location with friends by
default, as shown in Figure 1; it was placed under Location
of Account Settings, which is not a typical place where users
look for privacy settings, not to mention that the entry for
Account Settings is in the middle of a long list with 41 various
configurations, making it even less likely for the user to notice
the entry. This problem is found to be pervasive in our study,
affecting prominent apps like LinkedIn, Instagram, and Spotify.
Understanding hidden privacy settings. In this paper, we
report the first large-scale measurement study on such hidden
privacy settings, which sheds new light on their pervasiveness,
privacy implications and the fundamental causes of their
problematic designs. For this purpose, we perform user studies
to identify the unique features of the configurations hard to
locate by ordinary users, and further develop an automatic
analysis tool called Hound to recover these features from an
app and detect its hidden settings.

More specifically, we conduct two user studies in our
research. The first is to understand the user’s perception of

(a) Example of a UI-path

Settings

Profile

Phone contact visibility
(Allow to be found from
phone number)

y

Fig. 2: Example of a UI-path Fig. 3: Example of typical
icons

Fig. 4: Example of too
long text description

data exposure controlled by the privacy settings. The study
shows that the overwhelming majority of the participants
(83.5%) do care about at least one such privacy setting in our
questionnaire. The second study is meant to find out whether
these valuable privacy settings are presented to the user in the
right way, which reveals that nearly half of them (47.12%) are
considered difficult to find, and 9.64% cannot be located by
any participants. From the participants’ inputs, we highlight
the root causes of the troubles in finding these settings and
convert them into features to help detect the settings.

Detecting hidden settings. To understand the privacy impli-
cations of the hidden settings and support more usable privacy
configurations, we build a new tool called Hound to recover
privacy settings and identify those problematic ones from an
app’s UI. Note that finding privacy-related UI items is known
to be hard [2], due to the diversity of the confidential data
(e.g., friend list, music listening history), not limited to these
protected by permissions. More challenging here is to detect
these hidden ones, the settings hard to find by ordinary users,
which has never been done before.

To address these challenges, we first utilize natural language
processing (NLP) to capture privacy-related settings, through
training a classifier on top of a set of feature vectors, each
constructed from a setting’s description (Section III). From
these settings, our approach further discovers those considered
to be hidden, based upon the aforementioned features identified
from the user study. These features are all related to UIs,
extracted from the UI-path that links the app’s home view (i.e.,
initial activity) to a given privacy setting, when the user clicks
on a certain UI element on each view to move the UI to the next
one, until the setting is reached. An example of such a path, as
illustrated in Figure 2, is home view → Profile→ Settings.
Automatic discovery of such a path through a static analysis
is difficult, due to the diversity in the way that a UI transition
can be triggered (e.g., intent, callback, etc.). Our solution is
semantics-based UI tracing, a novel technique that exploits the
observation that when the UI moves from one view to another,

the text description of the UI element triggering the move on
the former is often semantically related to the title of the latter.
For example, in Figure 2, the title of the last view and the
text description of its triggering UI element in the second view
have the same text “Settings”. In this way, our approach can
automatically piece together views that link the source (home
view) to the target (the privacy setting). Using the features
extracted from such UI-paths, Hound can effectively detect
hidden privacy settings (an accuracy of 93.54%, see Section IV)
with a performance of 530 seconds per app.
Findings. Running Hound on 50,000 apps from Google Play
and 50,000 apps from Chinese third-party markets, we perform
the first large-scale analysis of mobile apps’ privacy settings.
To our surprise, among all 7,058 apps containing privacy
configurations, nearly half of them (47.04%) have some hidden
privacy settings. Moreover, these hidden ones cover more than
one-third (36.29%) of all the privacy settings discovered. Most
of these hidden settings turn out to be privacy-critical: 82.16%
of them by default leak out user information. Our study shows
that although apparently app developers try to provide users
with more privacy-related options to customize their protection,
the problem of hidden privacy settings becomes even more
serious, with more settings hard to discover by the user, possibly
due to the developers’ lack of understanding about the usability
challenges from the user’s perspective. Our research further
reveals the developer’s design pitfalls and offers suggestions
for improvement.
Contributions. The contributions of the paper are summarized
as follows:
• New understanding of hidden privacy settings. We conduct
the first systematic study on the privacy settings hard to discover
and understand across a large number of popular Android apps
(100K). Our study brings to light the significant impacts of the
problem (over a third of privacy settings hidden and most of
these settings exposing user data by default) and its potential
causes, which can lead to better design of these settings’ UIs
and enhancement of protection for user data.

• New technique. We develop a novel technique to automatically
discover these hidden privacy settings, base upon the knowledge
recovered from two user studies and a novel static analysis
technique that utilizes semantics of UI elements to correlate
the views triggered sequentially during the user’s navigation.
We demonstrate the effectiveness of the new technique, which
achieves a high accuracy of 93.54%, and its efficiency that
enables the large-scale study.

II. UNDERSTANDING HIDDEN PRIVACY SETTINGS

We design two user studies to understand the privacy settings
from the user’s perspective. One is to find out one’s perception
of the data exposure controlled by the privacy settings. The
other is to determine whether these settings are presented to the
user in an easy-to-find way. From their feedback, we further
identify what makes these settings hard to find, which further
helps us detect them in apps.

A. Privacy Settings in Mobile Apps

Privacy settings. To support users with personalized services,
mobile apps often rely on their personal data, which may
contain sensitive information. For example, many apps (e.g.,
LinkedIn) display to the user personalized advertisements based
upon analyzing her cookies (often with sensitive information
such as previously visited websites and shopping history);
Facebook shares a user’s friend list with others for expanding
their friend circles. To get the user’s consent for collecting
such data and also enable her to trade protection for usability,
the app developer tends to provide privacy settings to let one
control how her personal information is collected, shared and
used [3]. For instance, LinkedIn allows their users to disable
target advertising through “Advertising preferences (Choose
whether LinkedIn can use cookies to personalize ads)”.

To understand the privacy settings and the user data they
protect, we manually analyze 200 popular apps1 (top 100 apps
in English language from the official market Google Play and
top 100 apps in Chinese language from the Baidu market, a
famous Chinese alternative market). These apps fall into 37
different categories as defined by Google Play (e.g., dating,
finance, shopping, etc.). For each of them, we extract all the
settings under the UI titled Privacy Settings. In this way, we
collect around 600 settings and further classify them into six
categories according to the data they protect, as shown in
Table I, including on-device data, users’ personal profile, users’
social connections, users’ behaviors, users’ posted contents,
and anti-spam settings. It is important to note that only the
on-device data can be secured by system permissions such
as locations and contact lists. For the data in other categories
that actually constitute most (87.31%) of the privacy settings,
users can only control their leakage through the settings. If
they are not properly presented and managed, information will
be disclosed without the user’s consent.

1We collect the apps which have a UI titled Privacy Settings.

User study 1: User perspective of privacy settings. To
understand whether users really care about the private data
protected by the settings, we conducted an online survey
through Amazon Mechanical Turk (MTurk) [4]. The survey
is designed to ask users to which extent they care about the
private data. Specifically, from the Facebook app, we randomly
selected one privacy setting in each of the above categories, and
asked the participants about their feelings if the data protected
by the given settings were leaked (e.g., “Facebook accesses
your location even when you are NOT using the app. What do
you feel about if this case happens?”). A participant’s response
can be “Very upset”, “Upset”, “Neutral”, “It might be okay”
or “I don’t care”. Details of the privacy settings and the survey
are presented in Appendix X-A.

The survey started in September 2018 and had lasted for two
weeks. 269 Turkers participated in the survey, and 265 of them
had used the Facebook app for over one month. Their median
age is 29 (44.15% male and 55.85% female). 60.38% hold a
Bachelor or a higher degree. After collecting all the responses,
we removed 65 careless responses by checking attention
questions [5]. From the survey, we find that 83.5%2 of the
participants care about (i.e., feel “Very upset” or “Upset” to) the
data covered by at least one privacy setting in the questionnaire,
and 61.5%3 of them care about the data protected under more
than half of the settings. Detailed responses are presented in
Figure 12 (Appendix X-B). We also asked the participants
to compare the data protected by the settings (provided by
developers) with those guarded by system permissions [6].
71.0%4 of them think that the privacy-setting related data are
as important as or even more important than those covered by
permissions, just as we expect.

B. Hidden Privacy Settings

To understand why some privacy settings are difficult to
find from the user’s perspective, we conduct the second user
study that involves 732 participants and lasts over 100 days.
The results reveal that nearly half (47.12%) of the settings
are considered as hidden, and about one-tenth (9.64%) of
them are never successfully found by any participants. From
the participants’ feedback, we further identify six root causes
representing almost all of their opinions about what made a
privacy setting difficult to find.
User study 2: Identify hidden privacy settings. In this survey,
we asked the participants to locate the 600 given privacy settings
from the 200 apps and describe their experience in finding these
settings. For the English apps, we recruited 405 participants
from MTurk during Oct. 23th, 2017 and Jan. 18th, 2018. We
installed them on an online mobile simulator Appetize.io [7]
and gave the URL links to the participants for testing5. For the
Chinese apps, we recruited Chinese participants from university

279.62% if the careless responses are included.
356.23% if the careless responses are included.
463.94% if the careless responses are included.
5The mobile simulator is commonly used for testing mobile apps. The

operation experience is very similar to that on real smartphones.

TABLE I: Categories and examples of privacy settings

Category Percentage Example App

On-device data 12.69%

Do not share contacts with Wicker Wickr
Use your location to find people near you Swarm
Sync message automatically Baiduyun
Sync phone album Leishiyun

Users’ personal profile 14.02%

Hide profile 2go
Show age on your profile Scruff
Only people you authorize will be able to view your profile We Heart It
Do you want search engines outside of Facebook to link to your profile Facebook

Users’ social connections 10.18%

Who can see your friend list Facebook
Do not show people I follow and groups I’ve joined Blued
Who can see the people, pages and lists you follow Facebook
Show my followers Lofter

Users’ behaviors 13.36%

Don’t show my listening history to my friends QQ Music
Help accelerate migraine research with your use data Migrain Buddy
Choose whether LinkedIn can use cookies to personalize ads LinkedIn
Allow Yelp to target ads on other sites and apps based on your use of Yelp Yelp

Users’ posted content 11.69%

Who can see your posts Facebook
Show my private photos Blued
Who can see my diary QQ
Hide my articles Rela

Anti-spam 38.06%

Allow strangers to comment Zalo
Allow friend add me without my confirmation WeChat
Who can send you friend request Facebook
Don’t accept if the user has no profile icon Airtripp

campuses for in-lab testing, mainly due to the fact that very few
Turkers know Chinese. This study started on Jun. 10th, 2017
and ended on Jul. 24th, 2017, in which real mobile devices
were given to the participates for doing their tasks. To minimize
the bias introduced when one is unfamiliar with mobile devices,
we required the participants to have at least one-year experience
with the smartphone. In the experiment, each participant was
asked to find five privacy settings from five apps in one
questionnaire and was compensated with two dollars for Turkers
and five Chinese Yuan for those attending the in-lab testing.
Use the dating app YouLove as an example, which has more
than five million downloads on Google Play. The participants
were told “Some social apps, such as ‘YouLove’, often provide
settings for users to set whether to share location”. Then we
asked them to find the setting and comment on the difficulty in
locating the setting (“very easy”, “easy”, “moderate”, “difficult”
and “very difficult”). If the participant considered the task to
be hard, we further asked her why she thought so. Note that,
to avoid unnatural user behaviors induced by the wording in
the survey, our questions do not include the terms like “privacy
setting” and other privacy-related wordings (which may cause
users to focus more on privacy-related settings). The survey
link is given in Appendix X-A.

In the end, we collected 338 completed responses from 405
participants on MTurk. Those who failed to finish the responses
were mainly discouraged by the complexity of the task. Further,
we removed 38 responses on MTurk and 27 responses from the
in-lab test by checking whether the answers to the open-ended
questions [8] make sense (e.g., They answer “Yes” to a “Why”
question). In the study, 300 valid responses from MTurk (out
of 338) and 300 valid responses from the in-lab participants
(out of 327, with 5 valid responses for each questionnaire)
were gathered before the survey collection stopped. Among
all the participants, 64.66% are male and 35.34% are female,
with 77.12% holding a Bachelor or higher degree.

To quantify the difficulty in locating a privacy setting, we

score the responses we received. We first assign each difficulty
level (“very easy”, “easy”, “moderate”, “difficult” or “very
difficult”) a numeric value, with 1 being the lowest and 5
the highest. When a participant did not find the given privacy
setting, we gave the setting a 5. Then for each privacy setting,
we calculated its average score. If the value is above 3, we
view it as a hidden setting. Among the 600 privacy settings,
we find that nearly half of them (47.12%) are hidden: 50.50%
of them are in English apps, and 44.33% are in Chinese apps.
Among the hidden privacy settings, 9.64% have not been found
by anyone; 42.83% of them have been missed by at least one
participant. In our study, we calculated the Fleiss’s kappa [9]
for every setting across all 5 participants, and the average result
is 71.93% (69.77% in English and 74.08% in Chinese), which
indicates that these participants’ ratings of difficulty levels for
the settings are in reliable agreement.

Root causes for hidden privacy settings. Also we asked the
participants to report why a setting is difficult to find. From the
survey, we get 1,800 feedback on privacy settings, which shed
light on the problem from the user’s perspective. For example,
116 participants (reporting 502 feedback) complain that some
apps do not put some privacy settings in their usual locations
as other apps do: e.g.,“I don’t see it anywhere. I go to privacy
setting. It’s not anywhere to be found. You seriously have it
there?”. 89 participants (reporting 351 feedback) mention that
it is hard for them to locate a privacy setting from a long list
of different configurations: e.g., “Too many items and texts
in one screen annoys me. I don’t want to read them one by
one.” These feedback are analyzed in our research to identify
six main causes, as shown in Table II, which cover 98.67%
of all the feedback. The rest 1.33% are less common, such
as “The fonts are too small.” that is reported by only one
participant. The percentage of each root cause summarized
from the feedback is shown in Table II.

These six causes are all related to UI-path, a sequence of
views that link an app’s home view (i.e., initial activity) to

TABLE II: Root causes for hidden privacy settings and
distributions of feedback

No. Causes #(%)Feedback

Habit
1 The UI-path is uncommon. 502(27.89%)
2 The indicator is uncommon. 153(8.50%)

3 The UI-path doesn’t have enough text
descriptions of indicators. 309(17.17%)

Patience
4 The UI-path is too long. 146(8.11%)
5 A view contains too many UI elements. 315(17.50%)
6 The text of a privacy setting is too long. 351(19.50%)

a given privacy setting. When the user clicks on a certain
UI element on a view to move the UI to the next one, these
two views are connected (with direction) on the UI-path. The
last view containing the privacy setting is referred to as the
key view. For example, in Figure 2, the left screenshot is the
home view, and the right one is the key view hosting the
privacy setting “PHONE CONTACT VISIBILITY (Allow to be
found from phone number)”. The UI-path is home view →
Profile → Settings. Here the UI elements trigger the UI
transition are called indicators (e.g., “Profile” and “Settings”
in the first two UIs in Figure 2).

Coming back to the causes for the observed user confu-
sion, the first three are related to user habits. Most users
tend to follow the UI-path: home view → Settings →
Privacy Settings. For the settings that cannot be found
through this path, they could get lost (Cause 1). For example,
we find a privacy configuration on the view titled Messages,
which is very hard for the user to locate. Further the UI
items that lead the user down the path are often characterized
by certain text descriptions and icons. Once these indicators
cannot be identified from such familiar signs, the user can have
trouble in finding the related settings (Cause 2). For example,
Privacy Shortcuts rather than Privacy Settings is found to make
it harder for the user to get to the settings. As another example,
we observe that the participants were confused when Settings
and Profile are not represented by their typical icons (gear and
portrait as illustrated in Figure 3). Another cause of confusion
is the lack of text descriptions. We discover that participants
can get lost in the presence of the indicators that do not have
text and represented with unusual icons (Cause 3).

Also causing the problem is the user’s patience. From the
participants’ feedback, in the presence of a long UI-path
(Cause 4) or a view with too many UI elements (Cause
5), the user becomes less likely to find a privacy setting. For
example, a “difficult” setting reported in our study is hidden
behind a UI-path with 5 views, which can only be reached
after the user clicks on 4 indicators, as shown in Figure 13 at
Appendix X-B. We even found a view carrying 47 elements.
Its privacy settings cannot be fully identified by all participants
in our study. Also interesting is that when a setting’s text
description is too long (see Figure 4), most people simply
ignore the setting (Cause 6).

III. DISCOVER HIDDEN PRIVACY SETTINGS

To understand the privacy implications of hidden settings,
we develop an automatic tool called Hound and utilize it

to perform a large-scale study on the usability of mobile
apps’ privacy configurations. Here we elaborate the design
and implementation of the tool.

A. Design Overview

The high-level design of Hound is illustrated in Figure 5,
which includes two components: Privacy Setting Discoverer
(PSD) and Hidden Privacy Setting Identifier (HPSI). PSD runs
Natural Language Processing (NLP) on the descriptions of an
app’s settings to identify those related to privacy. Then from
those settings, HPSI further utilizes a classifier, built on top of
the features discovered from our user study (see Section II-B),
to find those considered to be hidden.
PSD. PSD is designed to extract all the settings from a given
app, and then filter out those unrelated to user privacy based
on its analysis of their text descriptions. More specifically,
its setting extractor statically analyzes the app’s UI layout
files after disassembling it to find all its settings. The layout
files are in XML whose vocabulary [10] describes different UI
widgets. For example, the setting option widgets are usually
represented by < CheckBox.../ > [11], < Switch.../ > [12]
or < ToggleButton.../ > [13]. Moreover, the text descriptions
for the settings are in the widgets’ android : text attributes
or in those of other widgets nearby. Through checking widget
types and their text description, all the settings can be statically
discovered from the layout files6.

For each setting discovered, PSD uses NLP to determine
whether it is privacy-related. For this purpose, it first runs
vectorizer to build a vocabulary with all 1-gram and 2-gram
terms in the description of each setting. Then it inspects the
description and transform it into a numeric feature vector based
on tf-idf (frequency-inverse document frequency), a standard
term-weighting scheme that measures the importance of a
word in the document. In this way, we can model each setting
description with a high-dimensional (the size of the vocabulary)
feature vector. The feature vector is then used by the privacy
classifier to determine whether the setting is privacy-related.
The implementation of the PSD component is elaborated in
Section III-D.
HPSI. Most challenging here is how to detect hidden privacy
settings, those considered to be hard to find by the ordinary user,
which has never been done before. To address this challenge,
HPSI leverages the feedbacks obtained from our user study
(Section II-B) to train a classifier for predicting whether a
setting has the usability issue. More specifically, for each
privacy setting reported by PSD, HPSI extracts from it a set of
features and decides whether it is hidden by running a classifier
(hiddenness classifier) on the features.

Altogether, 14 features are used to characterize the hidden
settings, which are numeric values assigned based upon the
aforementioned six causes summarized over 1,800 feedbacks

6Some apps dynamically generate widgets and draw them in a view, which
is out of the scope of this paper. To capture them, one could analyze the code
for creating widgets in the apps.

Android
Apps

HIDDEN PRIVACY SETTING IDENTIFIER

hidden feature extractor

layout
analyzer

icon
resolver

UI-path
tracer

hiddenness
classifierIR

privacy
setting

hidden
settings

app
disassembler

PRIVACY SETTING DISCOVERER

setting
extractor

privacy
classifier

vectorizer

Fig 5: Architecture of Hound.

received in the second user study (Section II-B). Each feature
is designed to capture one aspect of the UI design that makes
a privacy setting difficult to find. They are elaborated in
Section III-B.

Extracting these features from an app’s code turns out to be
yet another challenge, due to their dependence on the UI-path
is nontrivial to construct statically. Our solution is semantics-
based UI tracing that connects the views involved in a UI
transition based upon the semantics of their content, particularly
between the text description of an UI element and the title of
the view that the element invokes once it is triggered. This
allows us to build an accurate UI-path automatically and further
extract features from the path, as elaborated in Section III-C.

B. Features of Hidden Privacy Settings

As mentioned earlier, we have summarized six causes
that render a privacy setting difficult to locate by the user
(Section II-B). They are further quantified into 14 features as
shown in Table X (in Appendix X-B) to characterize a setting,
which could further be utilized to determine hidden settings.
Below we detail the features.
Cause 1: Users could get lost when a privacy setting that

they are looking for does not follow a typical UI-path (e.g.,
home view → Settings → Privacy Settings). Thus, we
measure the similarities between a given setting’s UI-path and
a set of typical privacy-setting UI-paths, as identified by the
participants of our user study from 200 popular apps, through
calculating the Jaccard indices [14] between the sets of nodes on
the two given UI-paths u1 and u2. The maximum value of such
similarity scores is chosen as the first feature F1. Also, since
most users look for a privacy setting on Privacy Settings or
Settings, we utilize F2 and F3 to describe whether a given
privacy setting is on the two views, respectively.
Cause 2: Developers sometimes use uncommon text or

icons as indicators on UI-paths, which may not help users find
a given privacy setting. We design three features (F4 ∼ F6) to
characterize these situations. For the uncommon text indicators,
we measure the similarities between each text indicator on
a given UI-path and a set of most common indicator terms
(e.g., Me, Settings, Privacy Settings, etc.), which have been
collected manually from 200 popular apps. The similarity here
is calculated as the maximal Jaccard Index between the words
in an indicator text and those in the common term set. The
average similarity of all the indicators along a UI-path becomes
a feature F4. Secondly, we utilize the privacy classifier to
determine whether an indicator is related to privacy. The total
number of those unrelated to privacy is used as the feature

F5. Finally, from the feedbacks of our user study, people only
consider gears (standing for Settings) and portraits (standing
for Profiles) as icon indicators (in Figure 3) for configurations.
If developers use other icons on a UI-path, the users probably
will not click on them to seek privacy settings. So we count
the number of the icons down a UI-path that are neither gears
or portraits as the sixth feature F6. Since the developers may
come up with an icon in very diverse ways, we cannot use
image comparison for determining whether an icon is similar to
a commonly used gear icon. Our solution is to leverage “Best
Guess” in Google, which could give the semantic meaning of
the icon, for accurate comparison. An example of such a “Best
Guess” is shown in Figure 6.
Cause 3: Too many icons on a UI-path without text

descriptions could confuse users. We count the number of
icons in a UI-path as a feature F7.
Cause 4: A long UI-path may let users lose patience to

find a privacy setting. So we count the number of views on a
UI-path as another feature F8.
Cause 5: Too many UI elements on a view could also

cause one to lose patience. After carefully analyzing the users’
feedbacks, we use five features to describe this cause. Since the
key view (the one displaying the privacy setting) is important
for users to locate the privacy setting they are looking for,
we count the number of the UI elements on the key view as
the feature F9. Sometimes, users complain that when privacy
settings and other settings are mixed together, it becomes hard
for them to single out the privacy ones. So we calculate the
percentage of the privacy settings on the key view as F10.
Besides the key view, a similar problem also happens to other
views on a UI-path. So we count the number of the settings
for each of the view on the UI-path and choose the maximum
one as F11. Normally, users browse a view from the top to
the bottom and thus the settings located close to the bottom
may have a higher possibility to be missed. So, we use the
privacy setting’s position from the top of the key view as
F12. Similarly, across other views on the UI-path, we use the
average of the individual indicator’s positions on them as F13.
Cause 6: A very long text description of a privacy setting

may also cause the users to lose patience. So we count the
number of words in the descriptions as F14.

With all these features, we are able to quantify the difficulty
of locating a privacy setting, and identify the hidden ones from
users’ perspective. However, to automate this process at a large
scale, Hound has to build UI-paths for given privacy settings
in an app, which turns out to be more challenging than we
thought. Particularly, to the best of our knowledge, no prior
approach can be directly applied to precisely extract UI-paths

Fig. 6: Example of Google “Best Guess”

Settings layer 1
layer 2

(a)

(b)

Settingslayer 1 layer 2

layer 3

layer 3

Fig. 7: Example of overlapped widgets

location

friends

share show, hide, …

place, address, city, …

users, people, strangers, …

Replacement Word List

share my location to friends
à show my place to users

à hide my city to strangers

à

Generation example

……

Fig. 8: Example of synthetic sampling

from an app. Our solution to this problem is semantics-based
UI tracing.

C. Semantics-based UI Tracing

As mentioned earlier, Hound has to recover UI-paths before
quantifying the features along the path. A UI-path connects an
app’s views using indicators, which ends with the given privacy
setting. To generate a UI-path, one may think of dynamic
analysis (i.e., enumerating all the UI-paths by triggering various
events in the app). However, this approach is time-consuming
and can only find a limited number of UI-paths. Our idea is
to statically find views and indicators in the app, and then to
link them together for building UI-paths. This is also very
challenging due to the complexity of the layouts and the
limitation of static analysis, as elaborated below.

Challenges. The first challenge is that the indicator clicked
by users may not be correctly identified by simply analyzing
app code. From the users’ perspective, they focus on the texts
displayed on a view, and regard the widget [15] holding the
texts as the indicators. However, code analysis may view the
widget that handles the user’s click as the indicator, that is not
the one seen by the user. For example, in Figure 7 (a), there
are several overlapped widgets. The widget displaying the text
(in layer 1) is not the one (on layer 2) handling users’ click.
Another example is shown in Figure 7 (b). The widget with
the text (layer 1) and an indicating arrow on the right side (in
layer 2) are both on the same widget (in layer 3). Users click
the arrow on layer 2 because of seeing the text on layer 1, but
in fact, layer 3 handles the click. Similar situations commonly
exist in today’s apps due to the gap between users’ perceptions
and code implementations. We analyzed 100 privacy settings in
the top 100 apps from Google Play and found 89% (89/100) of
them have this problem, which makes it hard for static analysis
to identify indicators from the users’ perspective.

The second challenge is the dynamic features of Java, which
are hard to handle by static analysis. For example, inheritance
is an important Java feature where the child class can extend
the properties (methods and fields) of its parent class. This
feature is widely used by Activity [16] which is the main
implementation of a view in Android app development. Child
Activities can inherit basic properties from their parent class,
and implement their own properties. Using inheritance, when a
developer wants to call a function in a subclass, what he does
is to call the corresponding function in the superclass, without
indicating the subclass to reduce the workload of programming.

Java Runtime Environment [17] will decide the correct subclass
according to dynamic running environments. Therefore, it is
very hard for static analysis to know the correct child class for
capturing the connection between indicators and views.

Our idea. To address the two challenges, we design a
novel semantics-based approach to extract UI-paths, avoiding
heavyweight static analysis (e.g., traditional data flow and
control flow analysis). Our idea is based on an observation
that the title of a view has a semantic connection with the
indicator that the user clicks. For example, in Figure 2, the
title of the third view “Settings” matches the text of the
second indicator text (also “Settings”). This observation actually
follows Google’s guidelines [18] for app design: developers
should let users be aware of the navigation positions in the app.
We analyze 300 UI-paths in the top 100 apps from Google
Play, only two views in the two UI-paths do not follow the
observation (which actually may not be a good design). Hence,
the connection between the title of a view and its indicator is
exactly the hint for us to construct UI-paths.

Based on the observation, our idea is to leverage the
semantics of indicators and views to build the connections
between them, and further to construct UI-paths. Basically,
Hound first extracts all the indicators and views including their
semantics from an app. Then it connects an indicator and a
view if they have similar semantics. By tracing from a privacy
setting (i.e., the end of a UI-path) to the home view (i.e., initial
activity), Hound is able to build the full UI-path step by step.
In this way, we can avoid the static code analysis, and naturally
address the challenges above. We detail how to extract the
semantics and how to build connections as follows.

Semantics of indicators and views. There are two types
of indicators: texts and icons. Both of them have semantics
that guides users in the process of UI navigation. For text
indicators, the texts themselves can provide enough semantics.
For icon indicators, our idea is to leverage Google’s “Best
Guess” that we use for obtaining the semantic meaning of an
icon previously (see Section III-B). By uploading an icon to
Google, the semantics of the icon could be returned in the
form of texts automatically. Besides using Google, we also
take a look at the resource name that refers to an icon in code
which may contain semantics. In this way, Hound is able to
extract the semantics of all the text and icon indicators in a
given app.

Regarding views, most developers choose meaningful titles
to give users clear guidance on views’ contents. Thus, the text
of the title can be used for a view’s semantics. To extract

TABLE III: Semantic sources for title determine

Source Example

layout
string name android:text=’@string/setting title’
widget id name android:id=’@id/title’
style name android:style=’@style/center title’

smali

method name setTitle, initTitle, setCaption()
class name titleBar, headBar
parameter/field type progress title, actionBar head
annotation .annotation runtime AcitivtyCenterTitleRes

the titles, considering developers usually use the standard
Android API “setTitle” for assigning titles to views, Hound can
directly extract them from the API’s parameters in app code.
However, developers sometimes build their own title layout
style without using the API. How to determine the text for
a view’s title becomes non-trivial. Our idea is based on an
observation that developers would name resources, classes and
methods with certain semantics to help themselves develop
apps. Such semantics is a good hint for us to identify a view’s
title. For example, when a text’s id is “@id/title” in a view
layout file, we believe that the text has a high possibility to
be the title of the view. We summarize the semantic sources
we use to determine a title in Table III. In the worst case,
even if we fail to find the title text using the above approach,
the name of a view’s layout file and its classname may also
contain semantics. For example, the classname of a view for
privacy setting is often named PrivacySettingsActivity, and the
layout file is usually named privacy settings.layout, which give
semantics for establish the connection.
Build the connection. Hound connects the indicators and
views with similar semantics and starts to build a UI-path
backward from privacy settings. The basic idea is, given a
privacy setting, Hound first locates the view which contains
the setting. Then it searches for the indicator which has
the most similar semantics as the view and puts both of
them onto the UI-path. Later, Hound continues this process
until the home view is reached. In particular, to compare
the semantics of two texts, we define a similar semantics
degree d(text1, text2) = Jaccard(Wtext1 ,Wtext2), Wtext1

and Wtext2 are the word sets of the text1 and text2 respectively.
For example, when Hound calculates the degree for the view
titled “Privacy Settings Activity” and an indicator named “Pri-
vacy Settings”, Wtext1 is {“privacy”, “settings”, “activity”},
Wtext2 is {“privacy”, “settings”}. So the similar semantics
degree is 0.67. In this way, a UI-path can be constructed.

D. Implementation

PSD. PSD includes three modules: (1) App disassembler is
implemented using APKTOOL 2.3.3 [19], which reverses
Android apps to IR code (i.e., smali code) for further analysis.
(2) Setting extractor utilizes UIPicker [2] to extract all the
settings and their text explanations in an app. (3) Vectorizer
and privacy classifier are developed using a machine-learning
toolkit called scikit-learn [20], to transform setting texts into
numeric vectors and train the classifier.

To train the privacy classifier, we gathered 12,208 text
items for settings and indicators from the 200 apps (including

100 English apps and 100 Chinese apps, as mentioned in
Section II-A). Then, based on Table I, we manually labeled
them as privacy-related or not. On first sight, it seems that the
data could be directly used in training. However, the number
of privacy-related texts is too small (only 670), while there are
11,538 non-privacy texts. The classifier trained from these data
will be prone to overfitting. Therefore, we extend the number
of privacy-related texts. Since manually analyzing more apps
is time-consuming, our idea is to generate synthetic samples
based on existing examples [21], which is commonly used for
learning from imbalanced data. Particularly, for the texts of
a privacy setting, we first identify verbs and nouns through
Part-of-speech Tagging [22] of NLP, and change them into their
synonyms and antonyms to generate new texts. For example,
for the texts “share my location to friends”, Hound recognizes
the nouns location and friends, and the verb share. And then
Hound replaces them with other words and generates new texts
such as “hide my city to strangers” (see Figure 8). In this way,
we get 6,700 unique privacy-related texts from the original 670
privacy-related texts.

With the dataset, we tried several machine learning models
to build the classifier, including decision trees [23], random
forests [24] and SVM [25] with linear, poly and RBF kernels.
To achieve better performance, we utilize Optunity 1.1.1 [26], a
library containing various optimizers for hyperparameter tuning,
to evaluate each classifier with different parameters for 10,000
times. The results show that SVM with linear kernel performs
best with parameter C=2. We used 5-fold cross-validation, this
model achieves a precision of 96.64%, a recall of 97.94% and
an accuracy of 97.91%.

HPSI. HPSI is composed of two modules: (1) Hidden feature
extractor is supported by three techniques. UI-path tracer
extracts UI-paths using the semantics-based UI-path tracing.
Layout analyzer uses techniques from UIPicker [2] to analyze
the layout of each views. Icon resolver leverages “Best Guess”
of Google to get the meaning of icons in UI-paths. (2)
Hiddenness classifier is developed using the toolkit scikit-
learn [20] again.

The training data for the hiddenness classifier is labeled
by participants in the second human subject study (see
Section II-B), which allows us to detect hidden privacy setting
from users’ perspective. In the study, they labeled 283 hidden
privacy settings and 317 easy-to-find privacy settings. Then
similar to train the privacy classifier, we use different models
and choose the one with the best performance as the final
model. From our experiments (5-fold cross-validation), we
use SVM with RBF kernel (using the parameters: C=3 and
logGamma=-4). Our model achieves a precision of 93.01%,
a recall of 90.53% and an accuracy of 94.29%. Note that,
even though the training data come from the top 200 popular
apps, the evaluation of HPSI (see Section IV) demonstrates
the effectiveness of the classifier on randomly selected apps
and therefore suggests that our training set (the 600 privacy
settings) is representative.

TABLE IV: App collection

App Source Count
GooglePlay 50,000

Third-Party
Markets

360 17,414
Baidu 6,118

Xiaomi 23,826
Huawei 908
Tecent 1,734

IV. EVALUATION

We evaluate the effectiveness and performance of Hound as
follows.
Setting. We crawled real-world apps from various app markets
in 2017 and get 100,000 apps after removing duplicated ones
according to their MD5 checksums. Among the apps, 50,000
apps are from Google Play [27] and others are from third-
party markets in China. 37 categories are included (e.g., social,
business, dating, etc). Details of the apps are shown in Table IV.
Our server to statically analyze these apps has 80 cores with
2.2GHz CPU, 256GB memory and 70TB hard drives.
Effectiveness. The effectiveness of Hound depends on the
accuracy of PSD and HPSI. Thus, first we evaluate the two
components respectively and then calculate the accuracy of the
whole system.

First, we evaluate how accurate PSD is to identify the privacy
settings among all the settings in an app. We should have to
manually check all the texts of settings to find the privacy-
related ones referring to Table I and compare them with PSD’s
results. However, since it is pretty time-consuming to go over
all apps with manual work, we randomly selected 100 apps
for evaluation, including 50 apps from Google Play and 50
apps from Chinese third-party markets. In the 100 apps, PSD
discovers 470 privacy settings in 7,891 settings, including 454
real privacy settings and 16 wrongly identified ones, while we
find 477 privacy settings manually. Thus, PSD’s precision is
96.60% (454/470), recall is 95.18% (454/477) and accuracy is
99.51% ((454+7,398)/7,891).

Secondly, we evaluate how accurate the HPSI is to identify
hidden ones among all the privacy settings discovered by PSD.
We ran an in-lab user study using a subset of the questionnaire
for the user study 2 (see Section II), including the questions
about whether settings are easy to find, not why they are
easy/hard to find, to get the manual labels from the participants.
Then we compared them with the prediction results of HPSI to
measure its effectiveness. Specifically, we randomly chose 200
privacy settings (100 hidden ones and 100 easy-to-find ones
identified by HPSI) from 200 randomly selected apps (one
setting per each app, 100 English apps, and 100 Chinese apps).
Then we recruited 100 participants in the U.S. for English
apps and 100 participants in China for Chinese apps. Similar
to the user study 2, each participant was asked to find five
given settings from five different apps in one questionnaire.
Then they reported the difficulty level (from very easy to
very difficult) for locating a setting. In the end, we compared
the users’ average rating for locating a privacy setting with
the prediction result produced by HPSI. Details are shown
in Table V. Among the 200 privacy settings classified by

TABLE V: Evaluation results of HPSI

Participants
hidden easy-to-find total

HPSI
hidden 95 5 100

easy-to-find 7 93 100
total 102 98 200

133

310

477

655

829

971

1,210 1,200 1,204

0

200

400

600

800

1,000

1,200

1,400

0 4 8 12 16 20 24 28 32

A
v
e

ra
g

e
 t

im
e

(s
)

App Size(MB)

0 4 8 12 16 20 24 28 32 36

Fig. 9: Time cost distribution

HPSI (100 hidden and 100 easy-to-find ones), the participants
labeled 102 as hidden and 98 as easy-to-find. After comparing
the settings one by one, we conclude that 188 (95+93) privacy
settings are correctly classified by HPSI, and 12 hidden privacy
settings are wrongly labeled. Hence, HPSI achieves an accuracy
of 94.00% (188/200). Notably, for hidden privacy settings, it
achieves a precision of 95.00% (95/100), a recall of 93.13%
(95/102) and an F1 score of 0.9412.

For the incorrectly classified ones, we look into them and
find that their average scores are very close to three, which
means the privacy settings may be on the boundary. Further,
we communicate with participants about the 12 settings why
they view them as hidden or easy-to-find ones to figure out the
reasons for the wrong classification of HPSI. For the 7 false-
negative cases, HPSI identifies the icons as gears for settings
and texts as privacy settings, but participants say that the icon
sizes and the text font are too small for them to identify, or the
color of icons (e.g., a light green gear) is less noticeable. Thus,
participants miss them while our HPSI discovers them. For
the 5 false-positive ones, 2 is that the HPSI fails to identify
the icon for setting, but participants think it is expressive for
understanding; the other 3 cases are that participants think
the indicators have enough semantic information for leading
to privacy settings, but HPSI thinks the indicator texts are
unrelated to privacy. For this situation, in the future, we can
improve the accuracy by adding the semantic relevance between
indicators and privacy settings as a new feature, even though
the indicator text is not related to privacy.

Therefore, while considering PSD and HPSI together, Hound
can achieve an accuracy of 93.54% (99.51% * 94.00%) for
hidden privacy settings identification.

Performance. Hound has analyzed over 100,000 apps. Each
app costs about 530 seconds on average, including app
dissembling, setting extracting, privacy discovering and hidden
setting identifying. The median time of app analysis is 378
seconds, ranging from 15 seconds to 1798 seconds. It takes a
longer time to analyze apps with larger code size. But from
Figure 9, when the size of an app reaches 24 MB, the average
time does not increase any more. We guess that it is because
Hound analyzes an app from the views.

1.82 2.23 2.27

2.75

3.68

2.43% 2.59%

2.99%

7.36%
11.11%

41.11%

37.53% 33.33%
32.96%

26.47%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

#
 o

f
p

ri
va

cy
 s

e
tt

in
g

s
p

e
r

a
p

p

R
a

ti
o

of downloads

0 10 500 1 million 10 million

Ratio of hidden privacy settings in all privacy settings
Ratio of apps w/ privacy settings

Fig. 10: Hidden privacy settings on downloads

V. MEASUREMENT

With the real feedback from two human subject studies
lasting for several months and our scalable tool Hound, we
are able to look into the problem of privacy settings in
100,000 popular apps and gain unprecedented understandings
of them from users’ perspective. Our results not only show
the pervasiveness of hidden privacy settings but also disclose
the behind reasons why privacy settings are viewed as hidden.
Especially, through the evolution of privacy settings, we show
how privacy settings are changed to hidden even if developers
may actually have opposite willing. Further, we reveal that a
large number of settings are set to leak user privacy by default.

A. Landscape

As shown in Table VI, 7,058 out of 100,000 apps have
privacy settings. To our surprise, Hound finds that nearly half
of them (47.04% = 3,320/7,058) have some hidden privacy
settings. Moreover, these hidden ones cover more than one-third
(36.29% = 6,723/18,526) of all the privacy settings discovered.
On average, each app contains 2.03 (6,723/3,320) hidden
privacy settings. For the apps with a lot of downloads, the
problem of hidden privacy settings looks less severe, as shown
in Figure 10. Given that the popular apps actually contain
more privacy settings than those less popular, an educated
guess could be that the developers of the popular apps might
pay more attention to the usability of privacy settings and
therefore are more likely to make these settings explicit.

We compare the number of privacy settings between English
apps from Google Play and Chinese ones from the Baidu
market. From Table VI, we can see that English apps have
more privacy settings than Chinese apps. Specifically, 9.45%
English apps contain privacy settings while only 4.67% Chinese
apps do. This leads to our speculation that the developers of
English apps might attach more importance to privacy. Further,
among the 4,724 English apps containing privacy settings,
45.15% (2,133/4,724) include hidden ones. For Chinese apps,
the ratio turns out to be similar (50.86%=1,187/2,334). Also,
about one-third of all privacy settings in both English (38.49%)
and Chinese apps (30.99%) are hard to find, which indicates
that hidden privacy setting can be a pervasive issue for both
English and Chinese apps.

B. Why Does a Privacy Setting Become Hidden?

After manually analyzing each one of the detected 1,132
hidden privacy settings from 500 randomly sampled apps,
we find that there are two main fundamental causes of their
problematic designs for developers. One is that developers
make problematic categorization and place a privacy setting
into a view unfamiliar to users though they think the place is
easy for users to find. The other one is that developers use
confusing descriptions on privacy settings or indicators in the
way they understand but not so for users. We describe them
as follows.
Problematic categorization. As mentioned previously, users
expect privacy settings are in the view titled Privacy Settings.
However, developers may place them in other views. From our
evaluation, we find that 790 apps do not even have the view of
Privacy Settings for placing their 1,247 privacy settings. 857
apps disseminate their 1,327 privacy settings in other views
other than Privacy Settings which actually exists in the apps.
We find three places where developers put hidden privacy
settings.

Firstly, developers place a privacy setting to the view
related to its functionality. For example, a famous travel
app called Baidu Map has a functionality called “Track”
to record all previous tracks that a user navigated before,
for letting the navigation better match users’ expectation.
To protect users’ privacy, several settings are designed to
control the tracks collection, such as “allow to record your
driving/walking navigation tracks”. The UI-path of this
privacy setting is Me → Track → TrackSettings →
allow to record your driving/walking navigation tracks.
Developers expect users could find the setting when using the
functionality. However, from our study, it is pretty difficult for
a user to locate the setting.

Secondly, developers place a privacy setting to a view whose
title has similar semantics with the privacy setting. For example,
a privacy setting “Who can send me private messages” is placed
under a view titled Message Settings in two popular apps (i.e.,
a radio app named Lanrentingshu with more than 80 million
downloads and a social app named Wangliao with more than
2 million downloads). Also put into Message Settings are anti-
spam privacy settings. Even though the setting and view’s title
have the same keyword “message”, users in our experiments
never try to locate the privacy setting from this view.

Thirdly, developers put privacy settings in the view of general
settings. We find 293 apps put their privacy settings in Account
or Notification, and 116 apps put privacy settings into the
view titled Edit Profile. Such design lets users get lost when
they have to find the setting. Some lazy developers even mix
privacy settings with others and put all of them into the Settings
view, which results in too many settings in a view for users
to locate. Generally, once there are more than ten settings
in a view, users have to swipe the screen to check them all.
From our evaluation, we find that 5.89% (396/6,723) hidden
privacy settings are mixed with non-privacy settings, and they
are located in the middle of a view with more than ten settings.

TABLE VI: Privacy settings and hidden privacy settings identified by Hound

Number of apps Number of settings
Total w/ privacy settings w/ hidden privacy settings privacy settings hidden privacy settings

Google Play 50,000 4,724(9.45%) 2,133(45.15%) 13,101 5,042(38.49%)
Third-party markets 50,000 2,334(4.67%) 1,187(50.86%) 5,425 1,681(30.99%)
Total 100,000 7,058(7.06%) 3,320(47.04%) 18,526 6,723(36.29%)

(2) (3) (4)(1) (5)

Fig. 11: Example of strange icons for settings

Taking the famous social app Instagram as an example, users
have to locate the privacy setting “Allow accounts you follow
and anyone you message to see when you were last active on
Instagram apps” after swiping the screen to the 26th setting
in the view which contains 38 settings and 36 of them are
non-privacy.
Confusing description. Developers should describe an indi-
cator or a setting in the way that users get used to. However,
in our evaluation, we find 237 apps having hidden settings
contain 271 uncommonly used descriptions which mislead users
for locating a privacy setting. Typically, Profile and Settings
are two indicators that almost always appear in a UI-path to
privacy settings. In our evaluation, we find 58 apps use their
synonyms (e.g., use “Privacy Shortcuts” instead of “Privacy
Settings”). For users who get used to the most common terms,
even replacing “Privacy Settings” with “Privacy Controls” will
let them feel confusing. The situations are even diverse for
icon indicators. We find 47 uncommonly used icons in our
evaluation. Figure 11 shows some examples for Settings. The
five icons, especially the last one (in a Chinese popular social
app with more than 100 million downloads), are far from the
meaning of “setting”.

Another problem is that an indicator fails to let users infer
the privacy settings it guides. For example, in a famous social
app for job hunting named Maimai, an indicator with text

“who can see me” guides to the privacy settings “whether allow
search engine find me” and “whether create a Hudon wiki for
me automatically”. Most users in our evaluation cannot infer
the two privacy settings when they see the indicator. Such cases
happen to 74 privacy settings in 39 apps. Also, too long texts
to describe an indicator or a setting also let users lose patience.
From our evaluation, we find that the texts to describe privacy
settings in English apps usually range from 1 to 173 words,
which is much more than that in Chinese apps (usually with 2
to 15 words). Among them, 70 English hidden settings have
more than 30 words, and 24 settings have more than 50 words.

C. Evolution

To understand the problem of hidden privacy settings over
time, for the 7,058 apps which have privacy settings (collected
in the year of 2017), we downloaded their latest versions (in
2018). Finally, after removing those with no update, 5,485
new versions were successfully collected. For each app pair,
we compare their privacy settings. Interestingly, on one hand,

TABLE VII: Evolution from 2017 to 2018

year # of apps # of settings
w/ privacy

settings
w/ hidden privacy

settings
privacy
settings

hidden privacy
settings

en 2017 3,671 1,665(45.36%) 10,186 3,991(39.18%)
2018 3,671 1,805(49.17%) 11,923 5,469(45.87%)

zh 2017 1,814 899(49.56%) 3,972 1,221(30.74%)
2018 1,814 953(52.54%) 4,298 1,378(32.06%)

Total 2017 5,485 2,564(46.75%) 14,158 5,212(36.81%)
2018 5,485 2,758(50.28%) 16,221 6,847(42.21%)

we find 3,110 new privacy settings appear and 1,047 privacy
settings disappear. 36 apps add a new view named Privacy
Settings to organize the privacy settings which scattered in
their previous versions. On the other hand, the number of
hidden privacy settings also increase. For the 5,485 app pairs,
the number of apps with hidden privacy settings increases
from 2,564 (46.75%) to 2,758 (50.28%). Also the number of
hidden privacy settings increases from 5,212 (36.81%) to 6,847
(42.21%). More detailed is shown in Table VII. Apparently, the
developers are working on privacy-related options and provide
more privacy settings for users. In the meanwhile, however,
their current designs still face the usability challenges. Below
we dive into the details and show how privacy settings change
to hidden, or vice versa.

Easy-to-find→Hidden. Unfortunately, 226 privacy settings in
158 apps change to hidden even if they are easy-to-find in
previous versions. After carefully looking into the settings, we
find the causes are the same as those in Table II. When an
app has more functionalities in its newer version, developers
may not appropriately handle the newly added privacy settings,
especially when developers’ main purpose is the usability of
apps. It is hard for them to balance between supporting users
with enough control on privacy and keeping the app to be simple
and easy to use. Further, when developers are under pressure
to release a new version, they might do not have enough time
to design the privacy setting. So they are rush to put privacy
settings into unfamiliar places or use unfamiliar descriptions
without carefully thinking. For example, Photobucket (a popular
photography app with 10 million downloads in Google Play)
has a privacy setting “Share GIFs with Photobucket”. The
developers move the setting from the view titled Settings into
a new view titled Upload Settings in the new version 3.3.8,
which makes it difficult for users to locate the setting.

Hidden→Easy-to-find. We are also happy to find that 192
privacy settings in 132 apps become easy-to-find. Some
developers gather scatted privacy settings to a view and use
an indicator in the Privacy Settings view for guidance. For
example, recall that Hound finds a hidden privacy setting
in Baidu map (see Section V-B). In its new version 10.1.0
published in Feb. 2th, 2018, developers put the setting into a
newly created view titled Track Setting and add an indicator

TABLE VIII: Privacy leakage in different languages

English Chinese Total
of privacy settings 329 270 599
of privacy settings that leak privacy by default 260 (79.03%) 209 (77.41%) 469 (78.30%)
of hidden privacy settings 110 75 185
of hidden privacy settings that leak privacy by default 93 (84.55%) 59 (78.67%) 152 (82.16%)

TABLE IX: Privacy leakage in different categories

Category Privacy settings Hidden privacy settings

Total Opt-in
to leak Total Opt-in

to leak

On-device data 76 52
(68.42%) 22 16

(72.73%)

Users’ personal profile 84 69
(82.14%) 50 44

(88.00%)

Users’ social connections 61 61
(100.00%) 20 20

(100.00%)

Users’ behaviors 80 64
(80.00%) 28 22

(78.57%)

Users’ posted content 70 46
(65.71%) 27 19

(70.37%)

Anti-spam 228 177
(77.63%) 38 31

(81.58%)

pointing to the view under the Privacy Settings view, which
is easy for users to find. Another example is BMW Motorrad
Connected (an app for BMW bike) which has a privacy setting

“Help us improve the range of products from BMW Motorrad”.
The setting lets users control whether or not to allow the
app to collect user location, trace and other usage data in the
background. In the old version (1.3), it was put in the view
titled Legal notices and the UI-path does not even include the
Settings view. In the new version (1.4.2), developers move the
privacy setting into the view titled Data privacy which is much
easier to locate. Similar changes happen on popular apps (e.g.,
KingsChat with 500,000+ downloads and Web Browser with
10 million downloads). We find that among the 132 apps, 98
have been downloaded more than 100 thousand times and 54
installed over 1 million times. Therefore, it appears to us that
the developers of popular apps attach more importance to the
designs of privacy settings and are likely making more efforts
to improve their usability.

D. Privacy Leakage by Default

The problem will be even more severe when hidden privacy
settings are set to leak users’ private information by default.
Taking Facebook as an example, 22 out of 34 privacy settings
are set to leak privacy by default, among which 12 are hidden.
To further understand this problem, we randomly selected 100
English apps from Google Play and 100 Chinese apps from
Baidu market, and checked 599 privacy settings manually. The
results are astonishing: 469 (78.30%) privacy settings are set to
leak privacy by default (79.03% for English apps and 77.41%
for Chinese apps, see Table VIII). Among the hidden privacy
settings, 82.16% are set to leak by default, which means that
users cannot quickly find them and stop the leakage of their
privacy. Such privacy includes all the six categories in Table I.
We further counted the number of privacy settings and hidden
ones in each category for the 200 apps. The results are shown
in Table IX. To our surprise, 100% of users’ social connections

are exposed by default. Also in this category, about one-third
of the settings are hidden, which makes it very hard for users
to switch them off.

Further, our participants reported that the texts of some
privacy settings are confusing. Especially, some texts look like
protecting users’ privacy (e.g., the setting “Hide location”), but
the setting is switched off by default, which means the location
is not hidden. Maybe developers want such description to let
users feel that the app is protecting users’ privacy. Similar texts
include “Do not show people I follow and groups I’ve joined”
(in the social app Blued with over 14 million downloads)
and “Do not show my listening history to friends” (in the top
popular music app QQ music with over 550 million downloads
in China). We manually analyzed 599 privacy settings in the
200 apps, and found 21.87% of the privacy settings have this
problem (20.05% for English apps and 24.07% for Chinese
apps). Most users just leave the settings there without changing
the default status, unintentionally leaking their privacy.

VI. SUGGESTIONS FOR DEVELOPERS

Based on our measurement, we find that the problem
of hidden privacy settings is severe and pervasive. A good
guidance on how to design privacy settings for developers is
in urgent need. One may think of the UI design principles
from big companies like Google and Apple [18], [28], [29].
However, they only give very rough suggestions such as

“keeping an app consistent by using system-provided interface
elements, standard text styles, uniform terminology”, and more
importantly, they do not focus on privacy settings. GSMA [30],
an originally-European trade body that represents the interests
of mobile network operators worldwide, makes “Privacy Design
Guidelines for Mobile Application Development” [3] that
requires developers to ensure that defaulting settings are privacy
protective and give users control of their personal information
in the ways which are easy to understand and use. However,
still they fail to provide enough detailed suggestions. To help
developers better design their privacy settings, we summarize
some suggestions for them based on the human subject studies
and measurement.
• For all privacy settings, let Settings→Privacy Settings
starts their UI-paths. Most users get used to locating a privacy
setting using the two views. In this way, developers can avoid
the categorization problems such as placing a privacy setting
into an inappropriate view which users may never visit for
searching privacy settings. However, for some privacy settings
that are also reasonable to show up in other places, we suggest
the developers to use multiple entries to connect to the settings
from these places. For example, for the setting “share location”,

in addition to the entry under Privacy Settings, we suggest the
developers to add another entry in Location Settings.

• Never put too many UI elements in a view. Instead, use
nested views when necessary. A view containing too many
UI elements is one of the root causes of hidden privacy settings
(see Section II-B). Therefore, we suggest developers to ensure
that all the UI elements in the same view can be displayed in
one screen. When too many privacy settings have to be put
into a view, developers should consider group them according
to their functionalities and create a nested view for the group.

• Keep the text of a privacy setting short and concise;
separate descriptions of the setting from the text. Some
developers like to provide detailed descriptions for a privacy
setting, explaining more on the privacy been used. However,
users may not read them due to the complexity. Developers
should use a short text to describe the basic functionalities of
the setting and separate the long description from the text.

• Use typical icons as indicators and add text descriptions
to every icon. According to the second user study, users are
often confused by non-typical icons. What they like are concise
text descriptions.

• Design a privacy setting as follows: switch on for sharing
privacy; switch off for stopping sharing. Users get used to
this manner for a privacy setting. Otherwise, some users may
leak privacy unintentionally (See Section V-D).

Besides the suggestions, we will also support our tool
Hound for developers to identify hidden privacy settings
before releasing their apps. Once a hidden setting is identified,
developers can refer to our suggestions to improve their UI
design.

VII. LIMITATIONS

User study. The first limitation of the user study is that the
difficulty level of each privacy setting is quantified by the
average score given from 5 participants. And the results might
be subject to a lack of representativeness due to the relatively
small number of participants for each setting. However, the
average Fleiss’s kappa of our results is as high as 71.93%,
indicating a substantial agreement among the responses of
the participants. Therefore, the results of our user study are
a legitimate evaluation of the hiddenness of privacy settings.
Another limitation is that 57.26% of the participants from
China are working in computer science or related fields. These
participants have better skills for using apps comparing to the
general public so that they tend to view a privacy setting more
easy-to-find. Thus, having more users with different background
will make the result more general. Furthermore, it would be
ideal if we can find users that have used all the mobile apps
we evaluate. However, it is difficult to recruit such users with
the less popular apps. Alternatively, we require participants to
use mobile for at least one year to have experienced users. And
in our user study, we also ask our participants whether they
have used the app before. According to our research, whether

using the app or not doesn’t have much impact on their ability
to set the privacy settings (t-test, p>0.8).

Technique. Although the technique semantics-based UI tracing
is based on the static analysis which cannot handle obfuscation,
Hound can still identify the indicator texts and the title of views
to extract the UI-paths if an obfuscated app leaves semantics in
the resources files such as .layout file. We randomly selected
200 apps in our dataset, and only one app (0.5%) is obfuscated
entirely without any semantic information in the app. Hound
cannot identify privacy settings which are loaded from the
Internet dynamically. In our randomly selected 200 apps, only
nine (4.5%) apps load their privacy settings from servers each
time. This situation is not considered in our research.

VIII. RELATED WORK

Mobile privacy protection. Android system provides a
permission-based security model that restricts an app’s access
to user private data [6], [31], [32], [33]. A lot of previous
work [34], [35], [36], [37] focus on how to configure permission
preferences to avoid unnecessary permissions application and
the privilege escalation issue. Other works [38], [39], [40], [41]
provide various approaches to enhance Android permission
system for better protection. However, system permissions
only protect limited personal data (i.e., the privacy in the first
category in Table I such as contacts and location). Our research
studies on much broader privacy settings touched by mobile
apps beyond the protection by system permissions (i.e., the
other five categories in Table I).

Mobile app usability. The usability is essential in app design.
Lots of researches [42], [43], [44], [45], [46], [47], [48] work
on how to achieve the goal by studying the UI design principles
such as considering screen size, text font, data entry methods,
etc. But most of them focus on the general UI design for an app,
and only very few studies concentrate on the usability of mobile
privacy settings [49], [50], [51]. In addition to applying general
UI design rules on privacy settings [49], some studies[51],
[50] focus on the accuracy of privacy setting text, such as
discussing the consistency between the text and the desire
of privacy settings [51], and providing the suggestions for
designing a better understanding of privacy setting text for
users [50]. Different from them, our research is studying the
difficulties in locating a privacy setting, which is the first step
when considering the usability of privacy settings.

UI-paths analysis. Hidden feature extractor in HPSI is sup-
ported by the UI-path tracer, which extracts the UI-paths that
link an app’s home view to a given privacy setting. Previous
studies [52], [53], [54] extract UI-paths by searching Android
API startActivity to recover the connections among views. But
they cannot find the indicator that triggers one view to another.
To solve the problem, Hound uses semantics-based UI tracing
to correlate an indicator with a view according to the semantic
information of the indicator and title of the views.

IX. CONCLUSION

In this paper, we report the first large-scale measurement
study on privacy settings that are difficult for users to find.
More specifically, we did two user studies to understand users’
perceptions of data exposure controlled by privacy settings and
found whether these settings are presented to them in the right
way. From participants’ feedback, we summarized six root
causes for the trouble and converted them into 14 features for
further detect them. We build a tool called Hound with a high
accuracy of 93.54% to recover privacy settings and identify
those problematic ones, which uses a novel technique named
semantics-based UI tracing to extract features for training the
classifier. Running the Hound on 100,000 apps from Google
Play and third-party markets, we find that over one-third
(36.29%) of the privacy settings from these apps are hidden
and 82.16% of them by default leak out user private data. We
observed that the problem of hidden privacy settings becomes
more serious from the year 2017 to 2018, possibly due to the
fundamental causes of privacy settings’ problematic designs.
Finally, we provide five suggestions for developers to design
privacy settings.

X. ACKNOWLEDGMENT

We would like to thank Roya Ensafi and the anonymous re-
viewers for their insightful comments. IU authors are supported
in part by NSF CNS-1527141, 1618493, 1801432, 1838083,
ARO W911NF1610127 and Samsung Gift fund. IIE authors
are supported in part by National Key R&D Program of China
(No.2016QY04W0805, No.2016QY071405), NSFC U1836211,
U1536106, 61728209, National Top-notch Youth Talents Pro-
gram of China, Youth Innovation Promotion Association CAS,
Beijing Nova Program, Beijing Natural Science Foundation
(No.JQ18011) and National Frontier Science and Technology
Innovation Project (No. YJKYYQ20170070), Strategic Priority
Research Program of CAS (No.XDC02000000). UVA authors
are supported in part by NSF 1823325 and UVA Research
Innovation Award.

REFERENCES

[1] EDRi, “Big brother awards belgium: Facebook is the privacy villain of
the year,” https://edri.org/bba-belgium-2016/, 2016.

[2] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications.” in USENIX
Security Symposium, 2015, pp. 993–1008.

[3] GSMA, “Privacy design guidelines for mobile application development,”
2012.

[4] I. o. i. a. Amazon Mechanical Turk, “amazon mechanical turk,” https:
//www.mturk.com/, 2018.

[5] kim in oregon, “Mturk for academics,” https://
mturk4academics.wordpress.com/2015/03/13/3-types-of-attention-
checks/ , 2018.

[6] G. Android Developer, “System permissions,” https:
//developer.android.com/guide/topics/permissions/index.html, 2018.

[7] appetizeio, “Appetize.io-run native mobile apps in your browser,” https:
//appetize.io/, 2018.

[8] SurveyMonkey, “Open-ended questions: Enrich your data with more
context,” https://www.surveymonkey.com/mp/open-ended-questions-get-
more-context-to-enrich-your-data/ , 2018.

[9] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[10] Google, “Layouts,” https://developer.android.com/guide/topics/ui/
declaring-layout.html, 2018.

[11] “Checkbox,” https://developer.android.com/reference/android/widget/
CheckBox, 2018.

[12] “Switch,” https://developer.android.com/reference/android/widget/Switch,
2018.

[13] “Togglebutton,” https://developer.android.com/reference/android/widget/
ToggleButton, 2018.

[14] Wikipeida, “Jaccard index,” https://en.wikipedia.org/wiki/Jaccard index,
2018.

[15] G. Android Developer, “Widgets,” https://developer.android.com/guide/
topics/appwidgets/index.html, 2018.

[16] A. D. Google, “Activity,” https://developer.android.com/reference/
android/app/Activity.html, 2018.

[17] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Sivasubramaniam,
J. Rubio, and J. Sabarinathan, “Java runtime systems: Characterization
and architectural implications,” IEEE Transactions on Computers, vol. 50,
no. 2, pp. 131–146, 2001.

[18] Google, “Android design principles,” https://developer.android.com/
design/get-started/principles.html, 2018.

[19] R. W. Connor Tumbleson, “Apktool,” https://ibotpeaches.github.io/
Apktool/, 2018.

[20] Python, “Scikit-learn, machine learning in python,” http://scikit-learn.org/
stable/, 2018.

[21] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[22] E. Brill, “Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging,” Computational
linguistics, vol. 21, no. 4, pp. 543–565, 1995.

[23] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[24] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[25] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[26] J. S. Marc Claesen and D. Popovic, “Optunity,” http:
//optunity.readthedocs.io/en/latest/, 2014.

[27] Google, “Google play,” https://play.google.com/store, 2018.
[28] “Material design,” https://material.io/guidelines/, 2018.
[29] Apple, “Human interface guidelines,” https://developer.apple.com/ios/

human-interface-guidelines/overview/themes/, 2018.
[30] GSMA, “Gsma,” https://www.gsma.com/, 2018.
[31] Apple, “Requesting permission,” https://developer.apple.com/ios/human-

interface-guidelines/app-architecture/requesting-permission/, 2018.
[32] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Automatically

securing permission-based software by reducing the attack surface:
An application to android,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2012, pp. 274–277.

[33] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627–638.

[34] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
2014.

[35] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of
android applications’ permissions,” in Software Security and Reliability
Companion (SERE-C), 2012 IEEE Sixth International Conference on.
IEEE, 2012, pp. 45–46.

[36] Q. Do, B. Martini, and K.-K. R. Choo, “Enhancing user privacy on
android mobile devices via permissions removal,” in System Sciences
(HICSS), 2014 47th Hawaii International Conference on. IEEE, 2014,
pp. 5070–5079.

[37] M. H. Loorak, P. W. Fong, and S. Carpendale, “Papilio: Visualizing
android application permissions,” in Computer Graphics Forum, vol. 33,
no. 3. Wiley Online Library, 2014, pp. 391–400.

[38] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative security
risk assessment of android permissions and applications,” in IFIP Annual
Conference on Data and Applications Security and Privacy. Springer,
2013, pp. 226–241.

https://edri.org/bba-belgium-2016/
https://www.mturk.com/
https://www.mturk.com/
https://mturk4academics.wordpress.com/2015/03/13/3-types-of-attention-checks/
https://mturk4academics.wordpress.com/2015/03/13/3-types-of-attention-checks/
https://mturk4academics.wordpress.com/2015/03/13/3-types-of-attention-checks/
https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/guide/topics/permissions/index.html
https://appetize.io/
https://appetize.io/
https://www.surveymonkey.com/mp/open-ended-questions-get-more-context-to-enrich-your-data/
https://www.surveymonkey.com/mp/open-ended-questions-get-more-context-to-enrich-your-data/
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/reference/android/widget/CheckBox
https://developer.android.com/reference/android/widget/CheckBox
https://developer.android.com/reference/android/widget/Switch
https://developer.android.com/reference/android/widget/ToggleButton
https://developer.android.com/reference/android/widget/ToggleButton
https://en.wikipedia.org/wiki/Jaccard_index
https://developer.android.com/guide/topics/appwidgets/index.html
https://developer.android.com/guide/topics/appwidgets/index.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/design/get-started/principles.html
https://developer.android.com/design/get-started/principles.html
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://optunity.readthedocs.io/en/latest/
http://optunity.readthedocs.io/en/latest/
https://play.google.com/store
https://material.io/guidelines/
https://developer.apple.com/ios/human-interface-guidelines/overview/themes/
https://developer.apple.com/ios/human-interface-guidelines/overview/themes/
https://www.gsma.com/
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/requesting-permission/
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/requesting-permission/

[39] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th ACM
conference on Computer and communications security. ACM, 2010,
pp. 73–84.

[40] A. Armando, R. Carbone, G. Costa, and A. Merlo, “Android permissions
unleashed,” in Computer Security Foundations Symposium (CSF), 2015
IEEE 28th. IEEE, 2015, pp. 320–333.

[41] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permission
model and enforcement with user-defined runtime constraints,” in
Proceedings of the 5th ACM symposium on information, computer and
communications security. ACM, 2010, pp. 328–332.

[42] C. Coursaris and D. Kim, “A qualitative review of empirical mobile
usability studies,” AMCIS 2006 Proceedings, p. 352, 2006.

[43] R. Harrison, D. Flood, and D. Duce, “Usability of mobile applications:
literature review and rationale for a new usability model,” Journal of
Interaction Science, vol. 1, no. 1, p. 1, 2013.

[44] D. Balfanz, G. Durfee, D. K. Smetters, and R. E. Grinter, “In search of
usable security: Five lessons from the field,” IEEE Security & Privacy,
vol. 2, no. 5, pp. 19–24, 2004.

[45] N. Asokan and C. Kuo, “Usable mobile security,” in International
Conference on Distributed Computing and Internet Technology. Springer,
2012, pp. 1–6.

[46] C. Ryan and A. Gonsalves, “The effect of context and application type on
mobile usability: an empirical study,” in Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38. Australian
Computer Society, Inc., 2005, pp. 115–124.

[47] G. Buchanan, S. Farrant, M. Jones, H. Thimbleby, G. Marsden, and
M. Pazzani, “Improving mobile internet usability,” in Proceedings of the
10th international conference on World Wide Web. ACM, 2001, pp.
673–680.

[48] J. Gong and P. Tarasewich, “Guidelines for handheld mobile device
interface design,” in Proceedings of DSI 2004 Annual Meeting, 2004,
pp. 3751–3756.

[49] T. Paul, D. Puscher, and T. Strufe, “Improving the usability of privacy
settings in facebook,” arXiv preprint arXiv:1109.6046, 2011.

[50] N. Wang, P. Wisniewski, H. Xu, and J. Grossklags, “Designing the
default privacy settings for facebook applications,” in Proceedings of
the companion publication of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM, 2014, pp.
249–252.

[51] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove, “Analyzing
facebook privacy settings: user expectations vs. reality,” in Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM, 2011, pp. 61–70.

[52] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: an automatic system for revealing ui-based trigger conditions
in android applications,” in Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices. ACM,
2012, pp. 93–104.

[53] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection,” in Pro-
ceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks. ACM, 2014, pp. 25–36.

[54] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for
new threats at the google-play scale.” in USENIX Security Symposium,
vol. 15, 2015.

APPENDIX

A. Supplying documents for Surveys

To see the example survey, please visit:
https://sites.google.com/view/mobi-privacy/home/user-study.

B. Tables and Figures

Q1: Allow Facebook accesses the

location even when users are not

using the app.

Q2: Link the profile to outside

search engines.

Q3: Allow everyone can see your

friendlist on Facebook.

Q4: Allow friends to see

advertisement related to your

activies.

Q5: Allow everyone to see your

posts that you are tagged in your

timeline.

Q6: Allow everyone to search you

through your phone number.

I don't careIt might be okay

NeutralUpsetVery upset

Fig. 12: Distributions of the user perspectives to six privacy
settings in the first user study

Fig. 13: Example of hidden privacy setting in Alipay caused
by a long UI-path

TABLE X: Calculation of features

p is a given UI-path
Feature
F1(p) = max

t∈T
{Jaccard(Nt, Np)}, where T is the typical UI-path set, Ni is the node set of a UI-path i.

F2(p) =

{
1 (∀x, x ∈ Tp, x 6= “Privacy Settings”) and (∃v, v ∈ A,Hv = “Privacy Settings”)
0 Otherwise

, where Ti is the indicator text

set of a UI-path i, A is the view set of the app, Hi is the title of a view i.

F3(p) =

{
1 (∀x, x ∈ Tp, x 6= “Settings”) and (∃v, v ∈ A,Hv = “Settings”)
0 Otherwise

, where Ti is the indicator text set of a UI-path i,

A is the view set of the app, Hi is the title of a view i.
F4(p) = avg

t∈Tp

{max
m∈M

{Jaccard(Wt,Wm)}}, where Ti is the indicator text set of a UI-path i,

M is the most common indicator text set, Wi is the word set of a text i.

F5(p) =
∑
t∈Tp

f(t), where Ti is the indicator text set of a UI-path i, f(i) =

{
1 if i is related to privacy
0 otherwise.

F6(p) =
∑
c∈Cp

f(c), where Ci is the icon set of a UI-path i, f(i) =

{
1 if i is a gear icon or a portrait icon
0 otherwise.

F7(p) = |Cp|, where Ci is the icon set of a UI-path i.
F8(p) = |Vp|, where Vi is the view set of a UI-path i.
F9(p) = |TKp |, where Ki is the key view of a UI-path i, Ti is the indicator set of a view i.

F10(p) =

∑
t∈TKp

f(t)

F9(p)
, where Ki is the key view of a UI-path i,

Ti is the indicator text set of a view i, f(i) =

{
1 if i is related to privacy
0 otherwise.

F11(p) = max
v∈Vp

{|Tv|}, where Vi is the view set of a UI-path i, Ti is the indicator set of a view i.

F12(p) = f(Sp,Kp), where Si is the privacy setting of a UI-path i,
Ki is the key view of a UI-path i, f(i, j) is the position of the setting i from the top of the view j.
F13(p) = avg

v∈Vp

{f(Sv,p, v)}, where Vi is the view set of a UI-path,

Si,j is the indicator of a UI-path j in the view i, f(i, j) is the position of the setting i from the top of the view j.
F14(p) = |WTp |, where Ti is the privacy setting text of a UI-path i, Wi is the word set of a text i.

	Introduction
	Understanding Hidden Privacy Settings
	Privacy Settings in Mobile Apps
	Hidden Privacy Settings

	Discover Hidden Privacy Settings
	Design Overview
	Features of Hidden Privacy Settings
	Semantics-based UI Tracing
	Implementation

	Evaluation
	Measurement
	Landscape
	Why Does a Privacy Setting Become Hidden?
	Evolution
	Privacy Leakage by Default

	Suggestions for Developers
	Limitations
	Related Work
	Conclusion
	Acknowledgment
	References
	Supplying documents for Surveys
	Tables and Figures

